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Abstract

In these short notes, we introduce the basics of Riemannian geome-
try. After defining Riemannian manifolds, which are smooth manifolds
equipped with a Riemannian metric, we go on to define the Levi-Civita
connection, which is a canonical connection associated to a Riemannian
manifold. The Levi-Civita connection enables us to define parallel trans-
port of a vector along a curve, as well as the notion of a geodesic. A
geodesic on a Riemannian manifold can be defined as a curve that locally
minimizes the energy of a curve. The Riemann curvature ten- sor of a
Riemannian manifold is the obstruction for a general parallel transported
vector along a small closed loop to return to itself. It thus measures in-
tuitively how far a Riemannian manifold is from be- ing “flat”, where
the prototypical example of a flat space is Euclidean space. We finally
write down Einstein’s equations in vacuum, i.e. with T,, = 0, with a
cosmological constant.

1 Affine Connections, Parallel Transport and Geodesics

An undergraduate course in differential geometry following say Do Carmo’s “Dif-
ferential Geometry of Curves and Surfaces”, would study curves and surfaces
embedded in Euclidean 3-space E3 . The latter has a natural inner product,
namely

< U,V >= U101 + UV + U3V3.

For a surface S embedded in E3, the inner product on E3 restricts to a “field”
of inner products at the tangent space of each point p € S, namely

Ip(Up, vp) =< up, vp >,

where up, v, € T,(S). The notion of a Riemannian metric g on a smooth
manifold M generalizes such a field.

Definition 1.1. A Riemannian metric g on a smooth manifold M is a “collec-
tion” (or “field”) of inner products g, on each tangent space T,,(M) that depends
smoothly on p. The latter condition can be made precise in the following way:
you require that g(X,Y’) be a smooth function on M whenever X and Y are
smooth tangent vector fields on M.



Theorem 1.2. A smooth manifold always admits a Riemannian metric (our
manifolds are assumed to be paracompact, by definition).

The proof of this existence statement follows from the existence of a so-
called “partition of unity”. Intuitively, you choose an open cover of M by
charts such that each p € M has a neighborhood that intersects only finitely
many open sets belonging to that open cover. You then choose a Riemannian
metric on each element of the open cover, and then glue them together using a
partition of unity to get a smooth globally defined Riemannian metric on M.
On any smooth manifold M , if f : U — R is a smooth function defined in some
neighborhood U of p € M , then one can define the directional derivative of f
at p in some direction v € T,(M). You just take any smooth curve

v:(—€e€) > M
such that v(0) = p and 4/(0) = v, and then define

Du)p) = S (FG 0o

One can then check that this definition is independent of the choice of v. How-
ever, on a smooth manifold M, if one attempts a similar approach to differentiate
a given smooth vector field Y, at some point p in a given direction v € T,,(M),
one immediately runs into a problem: for two neighboring points p and g, there
is no unique and canonical way to identify T,,(M) and T,(M).

Manifolds, maps, vector fields and so on will be assumed to be smooth, i.e.
C°, unless stated otherwise, and so the word “smooth” will be omitted.

We have the following definition.

Definition 1.3. An affine connection V on a smooth manifold M is a smooth
map from X X X into X, where the latter denotes the space of (smooth) vector
fields on M, such that:

(X,Y) = Vx(Y)
Vx (Y1 +Y2) = Vx(Y1) + Vx(Y2)
Vx(fY)=Vx(f)Y + fVx(Y)
Vxi+xY)=Vx, (Y)+ Vx,(Y)
Vix(Y) = fVx(Y),

for all vector fields X, X1, X5, Y, Y7, Y5 and all functions f : M — R.

The space of affine connections on a smooth manifold M is an affine space
modelled on the space of 1-forms on M with values in End(T'M), and is therefore
infinite-dimensional. However, if M is equipped with a Riemannian metric g,
in which case we say that the pair (M, g) is a Riemannian manifold, then one
can pinpoint a unique affine connection D called the Levi-Civita connection by
imposing two additional conditions. But first, we need a couple of definitions.



Definition 1.4. The torsion tensor 7V of an affine connection V on a smooth
manifold M is defined by

™V(X,Y) = Vx(Y) = Vy(X) - [X,Y],

where [X,Y] is the Lie bracket of X and Y. An affine connection V is said to
be torsion-free if its torsion 7V vanishes identically.

Definition 1.5. An affine connection V on a Riemannian manifold (M, g) is
said to be compatible with g if the following holds:

for all vector fields X, Y and Z.
We then have the following result.

Theorem 1.6. There is a unique affine connection on a Riemannian manifold
(M, g) which is both torsion-free and compatible with g. This affine connection
1s known as the Levi-Civita connection and will be denoted by D.

Proof. First, we assume that there is such an affine connection D, and prove
that it is unique. Consider

Dz(g(X,Y))=9(DzX,Y)+g(X,DzY)
Dx(g(Y.Z)) = g(DxY,Z) 4+ g(Y,Dx Z)
Dy (9(Z,X)) =g(DyZ,X) + g(Z, Dy X).

If we add the first two equations and then subtract the third, and use the
torsion-free condition, we obtain:

Dz(9(X,Y)) + Dx(9(Y, Z)) — Dy (9(Z, X)) =29(DzX,Y) + ...
+g(Y, [X7 Z]) +9(X, [27 Y]) +9(Z, [X7 Y])

Solving for g(DzX,Y) yields

29(DzX,Y) =Dz(g(X,Y)) + Dx(9(Y,Z)) — Dy (9(Z, X)) — ...
—g(Y, [X’ Z]) - g(X, [Z’ Y]) -9(Z, [X7 Y])

This shows uniqueness, since the right-hand side does not involve the covariant
derivative of a vector field. It remains to show existence. For that purpose,
one can define a connection by the previous formula, and check that it is well
defined, and is torsion-free and compatible with g. O

Definition 1.7. If (M, V) is a manifold with connection, then given a smooth
curve v : [0,a] — M and an initial tangent vector v € T o)M, one can define
the parallel transport v(t) of v along the curve 7 by requiring that v(0) = v and
that v(t) be covariantly constant along v or, in other words, that

V. (v)(t) = 0.



Definition 1.8. If (M, V) is a manifold with connection, then a curve v : I —
R, where I C R is an open interval, is said to be a geodesic if its velocity vector
is parallel, i.e. that

V% ¥ () =0

forallt e I.

This may not be, as it is, a very enlightening enlightening definition but,
in the case of a Riemannian manifold (M, g), with its Levi-Civita connection
D, there is a nice characterization of geodesics as critical points of the energy
functional on the space of curves between two fixed points p and ¢ in M. Let

Q(p,q) = {v:0,1] = M piecewise smooth |y(0) = p and v(1) = ¢}.

We define the energy functional E : Q(p,q) — R by

E(y) = / I (1)t

The Euler-Lagrange equation associated to the functional E is precisely the
geodesic equation.

2 The Riemann Curvature Tensor

From now on, we will work on a Riemannian manifold (M, g). Suppose we were
to parallel transport a vector vy along a small loop v, and call the end vector
v1. In general, v; may be different from vg. Convince yourself by considering a
closed piecewise smooth loop on a sphere or in the hyperbolic plane. There is
an obstruction for parallel transport along small closed piecewise smooth loops
to be the identity: it is called the Riemann curvature tensor. This is perhaps
the way to define the Riemann curvature tensor that gives the most insight into
what it is. We will define it the following way though, which is easier to use.

Definition 2.1. The Riemann curvature tensor R is defined as
R(X,Y) = DxDy — DyDx — Dix y).

That R is a tensor of type (3,1) is easy to checked. The Riemann curvature
tensor satisfies the following symmetries:

g(RY,X)Z, W) =g(R(X,Y)Z,W)
g(R(X, YW, Z) = —g(R(X,Y)Z, W)

Moreover, it satisfies the following identity, called the first Bianchi identity:

g(R(X,Y)Z,W) + g(R(Y, Z)X, W) + g(R(Z, X)Y,W) = 0.



These are the algebraic symmetries of the Riemann curvature tensor. It also
satisfies a first order differential equation, called the second Bianchi identity:

(DzR)(X,Y) + (DxR)(Y. Z) + (Dy R)(Z, X) = 0.

Next, we define the Ricci tensor as the following trace of the Riemann curvature
tensor:

Definition 2.2. The Ricci tensor Ric(—, —) of a Riemannian manifold (M, g)
is defined by
Ric(Y, Z) = Trace(X — R(X,Y)Z).

It follows from the symmetries of the Riemann curvature tensor that the
Ricci tensor is symmetric in its two arguments

Ric(Y, X) = Ric(X,Y),
for all vector fields X and Y. Finally, we define the scalar curvature s.

Definition 2.3. The scalar curvature s of a Riemannian manifold (M, g) is
defined by

n
s(p) = ZRicp(ei, €i),
i=1
where e1,...,e, is an orthonormal frame of tangent vectors at p.

One can easily check that this definition is independent of the choice of
orthonormal frame, and that the scalar curvature s is a smooth function of
p € M. We can now define Einstein manifolds.

Definition 2.4. A Riemannian manifold (M, g) is said to be Einstein if
Ric = Ag,
for some constant A.

Einstein manifolds are of interest to mathematicians and physicists alike.
Their behavior depends strongly on whether A is positive, zero or negative.



