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Hermitian matrices: their basic properties (1)

Definition

An hermitian n by n matrix A is a complex n by n matrix satisfying
A∗ = A, where A∗ = ĀT .

Proposition

Eigenvalues of an hermitian matrix are real.

Proof.

Let 0 6= v ∈ Cn be an eigenvector of A with eigenvalue λ (A hermitian).
Then

v̄TAv = λv̄T v = λ‖v‖2

Taking the conjugate transpose of the previous equation shows that

v̄TA∗v = λ̄‖v‖2 ⇒ λ̄ = λ
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Hermitian matrices: their basic properties (2)

On Cn, define the following map < −,− >: Cn × Cn → C by

< z,w >=
n∑

α=1

zαw̄α

< −,− > is called the standard hermitian inner product on Cn. It has the
following properties:

1 < c1z1 + c2z2,w >= c1 < z1,w > +c2 < z2,w >

2 < z, c1w1 + c2w2 >= c̄1 < z,w1 > +c̄2 < z,w2 >

3 < z,w >= < w, z >

4 0 6= z ∈ Cn ⇒< z, z >> 0
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Hermitian matrices: their basic properties (3)

Proposition

Eigenvectors v1, v2 of an hermitian matrix A corresponding to different
eigenvalues λ1, λ2, are orthogonal (i.e. < v1, v2 >= 0).

Proof.

v̄1
TAv2 = λ2 < v2, v1 > and also

v̄1
TAv2 = v̄1

TA∗v2 = (Av1)T v2 = λ1 < v2, v1 >. Hence
(λ1 − λ2) < v2, v1 >= 0. But λ1 6= λ2, so that < v2, v1 >= 0, and
therefore < v1, v2 >= < v2, v1 > = 0, as claimed.
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The finite-dimensional spectral theorem

Definition

An n by n matrix U is said to be unitary if U∗U = Id.

Theorem

An hermitian n by n matrix A is unitarily diagonalizable. More precisely,
there exist a diagonal matrix D and a unitary matrix U, such that
A = UDU∗ = UDU−1. Then D consists of the n (real) eigenvalues
λ1, . . . , λn in some order in its diagonal entries, and U consists of
corresponding eigenvectors.

Proof.

One can prove it by induction, using the fact that eigenvectors
corresponding to different eigenvalues λ 6= λ′ are orthogonal, with respect
to the standard hermitian inner product on Cn, and a Gram-Schmidt
orthogonalization in each eigenspace of dimension greater than 1.
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The Schur-Horn theorem (1)

Given an n by n hermitian matrix A, one can compute its eigenvalues
λ = (λ1, . . . , λn), which are determined up to a permutation, and one can
also extract the diagonal vector d = (a11, . . . , ann) ∈ Rn. The Schur-Horn
theorem provides necessary and sufficient conditions for two vectors λ and
d in Rn to be respectively the eigenvalues and diagonal for some hermitian
matrix.
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The Schur-Horn theorem (2)

Theorem (Schur-Horn theorem)

Let λ = (λ1, . . . , λn) and d = (d1, . . . , dn) be two points in Rn. Reorder
the λi , so that the reordered λi , which we denote by a prime, satisfy
λ′1 ≥ λ′2 ≥ . . . ≥ λ′n. Do the same for the di , so that d ′1 ≥ d ′2 ≥ . . . ≥ d ′n.
Then there exists an hermitian n by n matrix A having as eigenvalues λ
and as diagonal d iff

d ′1 ≤ λ′1 (2.1)

d ′1 + d ′2 ≤ λ′1 + λ′2 (2.2)

... (2.3)

d ′1 + · · ·+ d ′n−1 ≤ λ′1 + · · ·+ λ′n−1 (2.4)

d ′1 + · · ·+ d ′n = λ′1 + · · ·+ λ′n (2.5)
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The Schur-Horn theorem (3)

A subset C ⊆ Rn is said to be convex if given any two points x1 and x2 in
C , the points (1− t)x1 + tx2 ∈ C for all t such that 0 ≤ t ≤ 1. In other
words, the line segment joining any two points x1 and x2 in C must be
entirely contained in C . Given a subset S ⊆ Rn, we define its convex hull
Ŝ as the smallest convex subset of Rn containing S . A convex polytope is
the convex hull of a finite set S . As geometer D. Coxeter used to say, the
term polytope is the general term of the sequence: “point”, “polygon”,
“polyhedron”, etc.
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The Schur-Horn theorem (4)

Let Σn be the group of all permutations of the set {1, . . . , n}. Σn acts on
Rn by permuting the n standard coordinates x1, . . . , xn of Rn. Given two
points λ and d in Rn, as in the Schur-Horn theorem, it turns out that the
geometric conditions in that theorem are equivalent to d being in the
convex hull of the orbit Σn.λ, the latter convex hull being a convex
polytope, since the orbit Σn.λ is finite.
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The Schur-Horn theorem (5)

We can now reformulate the Schur-Horn theorem in more geometric terms.

Theorem (Schur-Horn, reformulated)

Let λ = (λ1, . . . , λn) and d = (d1, . . . , dn) be two points in Rn. Then
there exists an hermitian n by n matrix A having as eigenvalues λ and as
diagonal d iff d is in the convex hull Ŝ of S, where

S = {(λσ−1(1), . . . , λσ−1(n));σ ∈ Σn}
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Basic notions (1)

Definition (manifold)

A smooth n-manifold M is a second countable Hausdorff space, covered by
local charts {(U, fU)}, where U ⊆ M is open and fU : U → U ′, U ′ ⊆ Rn

open, and fU homeomorphism, such that the transition function fV ◦ f −1U ,
restricted to fU(U ∩ V ) is a C∞ diffeomorphism from fU(U ∩ V ) onto
fV (U ∩ V ), whenever U ∩ V 6= ∅.

From now on, we always assume that our manifolds are finite-dimensional.
In particular, Lie groups will be finite-dimensional, etc.
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Basic notions (2)

Definition (Lie group)

A Lie group G is a group which is also a smooth manifold, such that both
multiplication G × G → G and the map G → G sending g to g−1 are
both C∞.
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Examples of Lie groups (1)

Example (orthogonal groups)

The real orthogonal group O(n,R) is defined by

O(n) = {g ∈ GL(n,R); gTg = Id}

If (−,−) denotes the standard inner product on Rn, then the orthogonal
group is the group of all linear automorphisms g of Rn which preserve
(−,−), i.e. such that (g(v), g(w)) = (v,w) for any v,w ∈ Rn. If
g ∈ O(n,R), then det(g) = ±1 (by taking the determinant on both sides
of gTg = Id). The group O(n) has two connected components. The
special orthogonal group SO(n) is SO(n) = {g ∈ O(n); det(g) = 1}. The
Lie group SO(n) is a compact connected Lie group of (real) dimension
n(n − 1)/2 (while O(n) is not connected).
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Examples of Lie groups (2)

Example (unitary groups)

The unitary group U(n) is defined by

U(n) = {g ∈ GL(n,C); g∗g = Id}

Using the standard hermitian inner product < −,− > defined earlier, the
group U(n) is the group of C-linear automorphisms g of Cn which
preserve < −,− >, i.e. < g(v), g(w) >=< v,w >. By taking the
determinant on both sides of the defining equation, we get that
| det(g)| = 1 for all g ∈ U(n). We define also define
SU(n) = {g ∈ U(n); det(g) = 1}. U(n) and SU(n) are compact
connected Lie groups of real dimensions n2 and n2 − 1 respectively.
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Lie algebras

Definition

A (real) Lie algebra is a pair (V , [−,−]) where V is a real vector space,
and [−,−] : V × V → V is a map satisfying:

1 (bilinearity) for any fixed x ∈ V , [x ,−] : V → V is R-linear, and
similarly [−, x ] : V → V is R-linear,

2 (skew-symmetry) for any x , y ∈ V , [x , y ] = −[y , x ],

3 (Jacobi identity) for any x , y , z ∈ V ,
[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0.
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The Lie algebra associated to a Lie group (1)

Proposition

One can associate to any Lie group G a Lie algebra g of the same
dimension.

If G is a Lie group, denote by g = T1(G ), where 1 is the identity element
of G . We wish to define a Lie bracket [−,−] : g× g→ g. First we define
the Adjoint action of G on itself. For every g ∈ G , define Adg : G → G by
Adg (g1) = gg1g

−1. Then Ad is a smooth group action of G on itself. It is
also clear that Adg (1) = 1 for any g ∈ G . For a given g ∈ G , one can
differentiate Adg at 1, this gives an R-linear map
(Adg )∗ : T1(G )→ T1(G ), in other words (Adg )∗ : g→ g. This is the
adjoint action of G on g.
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The Lie algebra associated to a Lie group (2)

We now differentiate again (Adg )∗ at g = 1. This gives an R-linear map
ad : g→ EndR(g) called the adjoint action of g on itself. We now define
[x , y ] = adx(y) for x , y ∈ g. One can check that this bracket is actually a
Lie bracket. (g, [−,−]) is the Lie algebra associated to G .
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The Lie algebra associated to a Lie group (3)

From the previous proof, we see that a Lie group G acts on its Lie algebra
g, where an element g ∈ G acts via (Adg )∗ ∈ EndR(g). Actually, for any
g ∈ G , Adg is invertible, with inverse Adg−1 . It is customary to drop the
star from the notation, and simply write Adg , for the action of g on the
Lie algebra g.
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The Adjoint action, more concretely (1)

Now is a good time to look at matrix groups, to make things more
concrete. By a (real) matrix group, we mean a subgroup of GL(n,R), the
general linear group consisting of real linear automorphisms of Rn.
GL(n,R) is itself a Lie group of dimension n2. If G = GL(n,R), then for
g , g1 ∈ G , we have Adg (g1) = gg1g

−1, using matrix multiplication.
Writing g1 = Id +ty , where y ∈ g = gl(n,R), the space of all n by n real
matrices, we get Adg (g1) = Adg (Id +ty) = Id +tAdg (y) = Id +tgyg−1, so
that the Adjoint action of G on g is given by Adg (y) = gyg−1. Replacing
g by Id +τx , where x ∈ g, we see that

AdId+τx(y) = (Id +τx)y(Id +τx)−1

= (Id +τx)y(Id−τx + O(τ2))

= y + τ(xy − yx) + O(τ2)
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The Adjoint action, more concretely (2)

Summarizing, if G = GL(n,R), then the Adjoint action of G on its Lie
algebra g is given by Adg (y) = gyg−1, where g ∈ G and y ∈ g, and the
adjoint action of g on itself is given by adx(y) = [x , y ] = xy − yx . We
shall be interested in the Adjoint action of G on the dual g∗ of g. An
element g ∈ G maps ξ ∈ g∗ to Ad∗g−1(ξ) ∈ g∗, which satisfies

(x ,Ad∗g−1(ξ)) = (Adg−1(x), ξ) = (g−1xg , ξ), for all x ∈ g, where (−,−)

here denotes the natural pairing g× g∗ → R (which is a non-degenerate
bilinear pairing).
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Some examples of Lie algebras (1)

We have previously defined the special orthorgonal groups SO(n). We now
wish to work out its associated Lie algebra so(n). We have two equations
to differentiate, gTg = Id and det(g) = 1. Replace g by Id +tx , where x
is a real n by n matrix, and t is a small real parameter. Then
(Id +tx)T (Id +tx) = Id, so Id +t(xT + x) + O(t2) = Id, from which we
deduce that x + xT = 0. In other words, x is skew-symmetric. Let us
consider now the remaining equation det(g) = 1. This gives
det(Id +tx) = 1, so 1 + t tr(x) + O(t2) = 1, from which we deduce that
tr(x) = 0. But this was already implied by the equation x + xT = 0 by
taking the trace on both sides.
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Some examples of Lie algebras (2)

We have thus found that

so(n) = {x ∈ gl(n,R); x + xT = 0}

We can now easily see that the dimension of so(n) is n(n − 1)/2, which is
also the dimension of SO(n). Being a subgroup of GL(n,R), it follows
that the Lie bracket of so(n) is also the commutator [x , y ] = xy − yx , for
x , y ∈ so(n).
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Some examples of Lie algebras (3)

In a similar way, we find that

u(n) = {x ∈ gl(n,C); x + x∗ = 0}

Thus u(n) consists of skew-hermitian complex n by n matrices. We also
have

su(n) = {x ∈ u(n); tr(x) = 0}

The Lie brackets for both u(n) and su(n) are given by the commutator
[x , y ] = xy − yx . We can now compute the real dimension of u(n) to be
n2, and that of su(n) to be n2 − 1. We also remark that multiplication by
i identifies the space of hermitian n by n matrices with the space of n by n
skew-hermitian matrices, the latter being u(n). This already provides a
clue as to how Kostant generalized the Schur-Horn theorem!
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The Killing form of a Lie algebra

Given a (real) Lie algebra (g, [−,−]), for each element x ∈ g,
adx ∈ End(g). The Killing form of the Lie algebra g is the map
(−,−) : g× g→ R defined by

(x , y) = tr(adx ◦ ady )

The Killing form (−,−) is a symmetric bilinear form on g.
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Some examples of Killing forms (1)

Consider the Lie algebra so(n). Using the definition and a small
computation, one can show that its Killing form is

(x , y) = (n − 2) tr(xy)

We remark that (x , x) = (n − 2) tr(x2) = −(n − 2) tr(xT x) < 0 if x 6= 0,
so that the Killing form of so(n) is negative-definite.
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Some examples of Killing forms (2)

Consider the Lie algebra u(n). Its Killing form can be shown to be

(x , y) = 2(n tr(xy)− tr(x) tr(y))

which is a real-valued negative semi-definite bilinear form, but degenerate.
Indeed, i Id ∈ u(n), and (x , i Id) = 0 for all x ∈ u(n). On the other hand,
the Killing form of su(n) is

(x , y) = 2n tr(xy)

which is negative-definite.
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Semisimple Lie algebras (1)

Definition

A subset I ⊆ g is said to be an ideal of g if [g, I] ⊆ I. A Lie algebra g is
said to be simple if it is non-abelian (its Lie bracket does not vanish
identically) and if its only ideals are g and 0. If g1, g2 are two Lie algebras,
then their direct sum g1 ⊕ g2 is also a Lie algebra, with Lie bracket defined
by [(x1, x2), (y1, y2)] = ([x1, y1]g1 , [x2, y2]g2). A Lie algebra g is said to be
semisimple if it is the direct sum of simple Lie algebras.
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Semisimple Lie algebras (2)

The Lie algebras su(n) (n ≥ 2) and so(n) (n ≥ 3) are semisimple. The Lie
algebras gl(n) and u(n) are not semisimple, since they have a non-trivial
center (the center of g consists of all elements x ∈ g such that [x , g] = 0).
It is interesting to note that while so(n) is simple for n = 3 and for n ≥ 5,
but for n = 4, something interesting happens:

so(4) = so(3)⊕ so(3)
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Cartan’s criterion

Theorem (Cartan’s criterion)

A Lie algebra is semisimple iff its Killing form is non-degenerate.

We have seen that the Killing forms of so(n) and su(n) are
negative-definite, and therefore non-degenerate, so that so(n) and su(n)
are semisimple, as previously claimed.
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Cartan subalgebras

We now return to the general setting: let g be a Lie algebra (not
necessarily semisimple).

Definition

g is said to be nilpotent if the sequence defined by g0 = g, gn = [g, gn−1]
is 0 after finitely many n. A subspace h ⊆ g is said to be a subalgebra if it
is closed under the Lie bracket of g. A subalgebra h of g is said to be
self-normalizing if whenever x ∈ g satisfies [x , h] ⊆ h, then x ∈ h. A
subalgebra h of g is said to be a Cartan subalgebra if it is nilpotent and
self-normalizing.
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Maximal torus of a compact Lie group

Let G be a compact Lie group.

Definition

A torus T ⊆ G is a compact connected abelian Lie subgroup of G . A
torus T in G is said to be maximal if it is maximal in the sense of inclusion
(so that there does not exist a torus T ′ containing T other than T itself).

Given a torus T in G , the Weyl group W (T ,G ) is defined to be

W (T ,G ) = N(T )/C (T )

where N(T ) is the normalizer of T in G , and Z (T ) is the centralizer of T
in G . It turns out that if G is a compact connected Lie group, then any
two maximal tori are conjugate by some element in G .
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Examples of maximal tori and Weyl groups (1)

If G = U(n), then the diagonal matrices in U(n), namely matrices of
the form 

e iθ1 0 · · · 0
0 e iθ2 · · · 0
...

...
. . .

...
0 0 · · · e iθn


form a maximal torus T in U(n). Then the Weyl group
W (T ,G ) ' Σn, the permutation group on n elements.

If G = SU(n), then the diagonal matrices in that group also form a
maximal torus T . They consist of matrices of the same form, but also
having determinant 1. We also have W (T ,G ) ' Σn.
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Examples of maximal tori and Weyl groups (2)

If G = SO(2n), then a maximal torus T is given by matrices of the
form 

a1 −b1 · · · 0 0
b1 a1 · · · 0 0
...

...
. . .

...
...

0 0 · · · an −bn
0 0 · · · bn an


where a2i + b2i = 1, 1 ≤ i ≤ n. In this case, the Weyl group
W (T ,G ) ' Σn n (Z2)n−1, with σsi sjσ

−1 = sσ−1(i)sσ−1(j), for σ ∈ Σn

and si sj ∈ (Z2)n−1 (i 6= j) has all ones except at i and j .
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Examples of maximal tori and Weyl groups (3)

If G = SO(2n + 1), then a maximal torus T is given by matrices of
the form 

1 0 0 · · · 0 0
0 a1 −b1 · · · 0 0
0 b1 a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an −bn
0 0 0 · · · bn an


where a2i + b2i = 1, 1 ≤ i ≤ n. In this case, the Weyl group
W (T ,G ) ' Σn n (Z2)n, with σsiσ

−1 = sσ−1(i), for σ ∈ Σn and
si ∈ (Z2)n (1 ≤ i ≤ n) has all ones except at i .
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Kostant’s convexity theorem (1)

This section draws material from an article by Francois Ziegler in the
Proceedings of the AMS, entitled “On the Kostant convexity theorem”
(1992). Let G be a compact connected Lie group, T a maximal torus of
G , with associated Lie algebras g and t. Let π : g∗ → t∗ be the natural
projection. Then t∗ can be identified with the subspace of all T -fixed
points in g∗. Every coadjoint X of G intersects t∗ in a Weyl group orbit
ΩX . B. Kostant has proved that

Theorem (Kostant convexity theorem)

π(X ) is the convex hull of ΩX .
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Kostant’s convexity theorem (2)

Let us apply the theorem to G = U(n) and T consisting of all unitary n by
n diagonal matrices. The real-valued symmetric bilinear form (−,−) on g
mapping (x , y) = tr(x∗y) is positive definite and AdG -invariant. It allows
us to identify g ' g∗. We have already seen that by multiplying by i , the
space of hermitian n by n matrices can be identified with g, the latter
being the space of n by n skew-hermitian matrices.
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Kostant’s convexity theorem (3)

Coadjoint orbits correspond to isospectral sets of hermitian matrices,
which are hermitian matrices having the same fixed eigenvalues
λ1, · · · , λn. In this case, the image of a coadjoint orbit under π just
consists of the diagonals of all the matrices in an isospectral set of
hermitian matrices. On the other hand, the Weyl orbit ΩX just consists of
Σn.(λ1, · · · , λn). This shows that Kostant’s convexity theorem is indeed a
Lie-theoretic generalization of the Schur-Horn theorem.
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Further generalizations

Atiyah and independently Guillemin and Sternberg proved, almost
simultaneously in 1982, a generalization of Kostant’s convexity theorem in
the setting of compact symplectic manifolds having a hamiltonian toric
action. The image of such a manifold under the moment map is then also
a convex polytope (more precisely, it is the convex hull of the images of
the fixed points of the manifold under the torus action).
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And finally...

Thank you!!!
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