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Abstract

In this talk, we introduce the language of differential forms and the
exterior differential d by restricting to R™. We state Stoke’s theorem in
this setting, and explain how it includes Green’s theorem as well as Gauss’s
theorem of multivariable calculus as special cases. As applications, we
give a very short proof of Cauchy’s theorem in complex analysis, as well
as a very well known way of writing Maxwell’s equations using differential
forms, the d-operator as well as the Hodge star. The material is by now
very well known, but the hope is to demonstrate the beauty and usefulness

of differential forms.

1 Definitions and Basic Properties

Let V be a real vector space of dimension n, and chose a basis e1,. .., e, for V.
We would like to define A*V, the k-th exterior power of V. First, if S is
any set, then we define F(S) to be the free vector space generated by S. More
precisely,
F(S)={cis1+...+c.s15¢, € Rand s; € S}.

We let I be the vector subspace of F(V x ... x V) (the cartesian product of k

copies of V') generated by elements of the form:

(v1, .., 0.0 Fbawgy ... vg) —a.(v1, ..., Voo, Uk) — b(V1, o Wy V),
(V15 ey Uiy ey Ve UE) F (U1, Uy ooy iy e, VR,
foralla,bcR,v; € V,1<j<n,w; € V,and 1 <i<n. We write v A...Avg

for [(v1,...,vx)]. Then, one can show that A*V is a vector space of dimension

(Z) Given a basis ey, ..., e, of V, one can show that the following form a basis



of AFV:
(eil/\.../\eik;lgil<...<ik§n).

Assume now that (V, g) is an inner product space: more precisely, g : VxV — R
is a symmetric, bilinear and non-degenerate. The latter condition means that
if there is a v € V such that g(v,w) = 0 for all w € V, then v = 0. Examples

include:

1. Euclidean n-dimensional space, which is R™ with the “Euclidean” inner

product

n
g(v,w) = Z ViW;.
i=1

2. Minkowski n-dimensional space, which is R™ with coordinates zg, ...,

z,_1 and the Lorentzian inner product
n—1
g(v,w) = —vowo + Z VW
i=1

We next move on from multilinear algebra, to multivariable calculus. Con-
sider R™ with coordinates x;. A k-form « on R" is a smooth map from R"™ to
AF(R™)*. Tt can be written as

1
o = Z ail.“ikdxil /\.../\dﬂl‘ik, = y Z ail...ikdxil /\.../\d.l?ik,
U1,eenslk

1<iy <...<ip<n

where each «;,. ;, is a smooth function from R™ to R and, in the second line,
we have extended «;, .. ;, by complete skew-symmetry in its indices.

We now define the exterior differential, Cartan’s famous d operator, which
maps k-forms to k + 1-forms, i.e. it increases the degree of a form by 1. We

start off by defining df, where f is a O-form, i.e. a smooth function from R™ to

R. .
df =)
i=1

We next wish to define d of a k-form. We do this in two steps.

We then extend this definition to arbitrary k-forms by R-linearity. We compute

some examples in R3:



1. We first remark that df is nothing but the gradient of f:

_of of of
df = o dri + 92 dro + D dzs.

2. We compute the d of a 1-form:

d(fidzy + fodws + fadxs)
=df1 ANdxy + dfs A dxo + dfs A dxs

fs  Of Ofs  0fa of1  0fs

= (5= — =—=)dzy Adas + (57— — == )dao Ndws + (5— — = )dzz A day.

83:1 81‘2 8$2 81‘3 8.133 8%1

This is nothing but the curl of a vector field in R3.

3. We now compute the d of a 2-form:

d(frdy Ndz + fodz A dx + fsdx A dy)

COh L 0n oh
= (5301 + D4 + axg)dx/\dy/\dz.

This is nothing but the divergence of a vector field.

2 Stoke’s Theorem

Let B C R™ be a k + 1-dimensional compact oriented submanifold of R™ with
boundary 9B (0B has dimension k). Let o be a k-form on R™. Then Stoke’s

theorem asserts that
/ do = / Q.
B OB

Taking « to be a 1-form in R and B to be an oriented surface in R? with
boundary the closed curve 0B, we recover the classical Green’s theorem.

On the other hand, taking o to be a 2-form in R? and taking B to be a
smooth 3-dimensional region in R? with a closed surface OB as boundary, we

recover Gauss’s theorem.

3 Applications

Our first theorem is an application of Stoke’s theorem to prove Cauchy’s theorem

in complex analysis. First, observe that for an arbitrary smooth complex-valued



function f : U — C, where U C C is a non-empty open set, we get

Cof L af
where
gilaf Of dﬁilaij,g

9.~ 2\ oy 9z = (G i)

Hence, if f is holomorphic, we get

d(fdz) =df Ndz = %di/\dzzo.
z

Taking now B to be a star-shaped region in C with boundary I' = 9B, we obtain

/Ffdz:/Bd(fdz):O7

by Stoke’s theorem, assuming f is holomorphic on an open set containing B.
This proves Cauchy’s theorem.

Our second application is to electromagnetism. Let F and B be the electric
and magnetic fields on Minkowski four-dimensional spacetime, with B thought

of as a 2-form and E as a 1-form. More precisely,
B = Bidy ANdz + Badz N dx + Bsdx A dy and F = Fydx + Fody + Esdz.
Using E and B, one can form the 2-form
F=B+cdtNE.
Also, define
j=—podx Ndy Ndz+ Jidt ANdy A dz + Jodt Adz A dx + J3dt Adx A dy,

with pg being the charge density and J being the current density.

With respect to F' and j, Maxwell’s equations can now be written as

dFF =0
dx F = 4mj,



with * being the Hodge star, which maps a k-form to an n—k form, and satisfies

aAxf = (a,B)ug,

where « and 8 are arbitrary k-forms, (—,—) denotes the extension of the
Minkowski inner product to k-forms and v, is the volume form associated to

the Minkowski inner product, i.e.
vg = cdt Adx N\ dy A dz.

We also remark that we are now using a slightly different definition than the
previous definition of the Minkowski inner product, in order to incorporate the

speed of light constant c.

(z,y) = —cxoyo + T1y1 + Taya + T3ys.
A straight-forward computation shows that

V.B=0

dF =0&
¢cVXxE+0B=0

and
VxB—%@tE:ﬂ

dx F =4nj < ¢
V.E =4mpg
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