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Abstract

In this talk, we introduce the language of differential forms and the

exterior differential d by restricting to Rn. We state Stoke’s theorem in

this setting, and explain how it includes Green’s theorem as well as Gauss’s

theorem of multivariable calculus as special cases. As applications, we

give a very short proof of Cauchy’s theorem in complex analysis, as well

as a very well known way of writing Maxwell’s equations using differential

forms, the d-operator as well as the Hodge star. The material is by now

very well known, but the hope is to demonstrate the beauty and usefulness

of differential forms.

1 Definitions and Basic Properties

Let V be a real vector space of dimension n, and chose a basis e1,. . . , en for V .

We would like to define ΛkV , the k-th exterior power of V . First, if S is

any set, then we define F (S) to be the free vector space generated by S. More

precisely,

F (S) = {c1.s1 + . . .+ cl.sl; ci ∈ R and si ∈ S}.

We let I be the vector subspace of F (V × . . .× V ) (the cartesian product of k

copies of V ) generated by elements of the form:

(v1, . . . , a.vi + b.wi, . . . , vk)− a.(v1, . . . , vi, . . . , vk)− b.(v1, . . . , wi, . . . , vk),

(v1, . . . , vi, . . . , vj , . . . , vk) + (v1, . . . , vj , . . . , vi, . . . , vk),

for all a, b ∈ R, vj ∈ V , 1 ≤ j ≤ n, wi ∈ V , and 1 ≤ i ≤ n. We write v1∧ . . .∧vk
for [(v1, . . . , vk)]. Then, one can show that ΛkV is a vector space of dimension(
n
k

)
. Given a basis e1, . . . , en of V , one can show that the following form a basis
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of ΛkV :

(ei1 ∧ . . . ∧ eik ; 1 ≤ i1 < . . . < ik ≤ n).

Assume now that (V, g) is an inner product space: more precisely, g : V ×V → R
is a symmetric, bilinear and non-degenerate. The latter condition means that

if there is a v ∈ V such that g(v, w) = 0 for all w ∈ V , then v = 0. Examples

include:

1. Euclidean n-dimensional space, which is Rn with the “Euclidean” inner

product

g(v, w) =

n∑
i=1

viwi.

2. Minkowski n-dimensional space, which is Rn with coordinates x0, . . . ,

xn−1 and the Lorentzian inner product

g(v, w) = −v0w0 +

n−1∑
i=1

viwi.

We next move on from multilinear algebra, to multivariable calculus. Con-

sider Rn with coordinates xi. A k-form α on Rn is a smooth map from Rn to

Λk(Rn)∗. It can be written as

α =
∑

1≤i1<...<ik≤n

αi1...ikdxi1 ∧ . . . ∧ dxik , =
1

k!

∑
i1,...,ik

αi1...ikdxi1 ∧ . . . ∧ dxik ,

where each αi1...ik is a smooth function from Rn to R and, in the second line,

we have extended αi1...ik by complete skew-symmetry in its indices.

We now define the exterior differential, Cartan’s famous d operator, which

maps k-forms to k + 1-forms, i.e. it increases the degree of a form by 1. We

start off by defining df , where f is a 0-form, i.e. a smooth function from Rn to

R.

df =

n∑
i=1

∂f

∂xi
dxi.

We next wish to define d of a k-form. We do this in two steps.

d(fdxi1 ∧ . . . ∧ dxik) = df ∧ dxi1 ∧ . . . ∧ dxik .

We then extend this definition to arbitrary k-forms by R-linearity. We compute

some examples in R3:
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1. We first remark that df is nothing but the gradient of f :

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3.

2. We compute the d of a 1-form:

d(f1dx1 + f2dx2 + f3dx3)

= df1 ∧ dx1 + df2 ∧ dx2 + df3 ∧ dx3

= (
∂f2

∂x1
− ∂f1

∂x2
)dx1 ∧ dx2 + (

∂f3

∂x2
− ∂f2

∂x3
)dx2 ∧ dx3 + (

∂f1

∂x3
− ∂f3

∂x1
)dx3 ∧ dx1.

This is nothing but the curl of a vector field in R3.

3. We now compute the d of a 2-form:

d(f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy)

= (
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂x3
)dx ∧ dy ∧ dz.

This is nothing but the divergence of a vector field.

2 Stoke’s Theorem

Let B ⊂ Rn be a k + 1-dimensional compact oriented submanifold of Rn with

boundary ∂B (∂B has dimension k). Let α be a k-form on Rn. Then Stoke’s

theorem asserts that ∫
B

dα =

∫
∂B

α.

Taking α to be a 1-form in R3 and B to be an oriented surface in R3 with

boundary the closed curve ∂B, we recover the classical Green’s theorem.

On the other hand, taking α to be a 2-form in R3 and taking B to be a

smooth 3-dimensional region in R3 with a closed surface ∂B as boundary, we

recover Gauss’s theorem.

3 Applications

Our first theorem is an application of Stoke’s theorem to prove Cauchy’s theorem

in complex analysis. First, observe that for an arbitrary smooth complex-valued
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function f : U → C, where U ⊆ C is a non-empty open set, we get

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄,

where
∂f

∂z
=

1

2
(
∂f

∂x
− i∂f

∂y
) and

∂f

∂z̄
=

1

2
(
∂f

∂x
+ i

∂f

∂y
).

Hence, if f is holomorphic, we get

d(fdz) = df ∧ dz =
∂f

∂z̄
dz̄ ∧ dz = 0.

Taking now B to be a star-shaped region in C with boundary Γ = ∂B, we obtain∫
Γ

fdz =

∫
B

d(fdz) = 0,

by Stoke’s theorem, assuming f is holomorphic on an open set containing B.

This proves Cauchy’s theorem.

Our second application is to electromagnetism. Let E and B be the electric

and magnetic fields on Minkowski four-dimensional spacetime, with B thought

of as a 2-form and E as a 1-form. More precisely,

B = B1dy ∧ dz +B2dz ∧ dx+B3dx ∧ dy and E = E1dx+ E2dy + E3dz.

Using E and B, one can form the 2-form

F = B + cdt ∧ E.

Also, define

j = −ρ0dx ∧ dy ∧ dz + J1dt ∧ dy ∧ dz + J2dt ∧ dz ∧ dx+ J3dt ∧ dx ∧ dy,

with ρ0 being the charge density and J being the current density.

With respect to F and j, Maxwell’s equations can now be written as

dF = 0

d ∗ F = 4πj,
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with ∗ being the Hodge star, which maps a k-form to an n−k form, and satisfies

α ∧ ∗β = (α, β)vg,

where α and β are arbitrary k-forms, (−,−) denotes the extension of the

Minkowski inner product to k-forms and vg is the volume form associated to

the Minkowski inner product, i.e.

vg = cdt ∧ dx ∧ dy ∧ dz.

We also remark that we are now using a slightly different definition than the

previous definition of the Minkowski inner product, in order to incorporate the

speed of light constant c.

(x, y) = −c2x0y0 + x1y1 + x2y2 + x3y3.

A straight-forward computation shows that

dF = 0⇔

{
∇.B = 0

c∇× E + ∂tB = 0

and

d ∗ F = 4πj ⇔

{
∇×B − 1

c∂tE = 4πJ
c

∇.E = 4πρ0
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